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This paper will highlights the similarities and differences between tolerancing, manufacturing and 
measuring spherical and aspheric surfaces.  It will outline how Optimax communicates aspheric forms, the 
manufacturing challenges, what metrology options Optimax has for aspheres, and some example 
specifications for each specific metrology option.  In addition, guidelines provided for the optical designer 
suggest where to loosen tolerances in order to achieve the best quality aspheric surfaces in the most time 
and cost effective manner. 

SPECIFYING AN ASPHERIC LENS 

Specifying an asphere begins with material selection and specification of diameter, thickness, cosmetics 
and clear aperture in the same way a spherical lens would be specified.  The same style of tolerancing 
applies for these attributes as they would for a spherical lens.  There are many complete guides available1, 2. 

Optimax uses the General Aspheric Equation3 to communicate aspheric forms, and other forms such as the 
Forbes Form4 or a Power Series may be used.  Specifying form involves specifying Vertex Radius, Conic 
Constant and applicable Aspheric Coefficients. Adding Aspheric Coefficients adds complexity and 
therefore cost, and there is a point of diminishing returns in adding terms.  Fourth order terms fix fourth 
order errors, meaning a sixth order term adds nothing to a fourth order correcting asphere except cost. 

Tolerancing form error for an asphere is similar to tolerancing a combination of power and irregularity, 
showing deviation from ideal form.  Instead of showing power, a vertex radius tolerance is given.  For a 
precision optic, a vertex radius tolerance corresponding to a change in sag of ±0.001mm for the nominal 
asphere is a good starting point.  Optimax does not tolerance Conic Constant or the Aspheric Coefficients. 

Form error is largely determined in a compromise between what measurement accuracy is possible, what 
modeling shows is needed and what time and money is available.  More information on what measurement 
accuracy is possible and sample form error specifications are shown in the Metrology section. 

Centration errors can destroy lens performance, and critical consideration must be given to manufacture 
and measurement methods.  Centering aspheres involves aligning aspheric axis to mechanical axis and the 
other surface, three things instead of two for spheres.  Modeling will guide tolerancing of tilt and decenter.   

ASPHERE MANUFACTURING CHALLENGES 

While aspheric forms and their promise have been known to optical designers for centuries, for most of that 
time only the mildest forms have been physically realizable.  Spherical lens manufacture historically has 
worked two surfaces together in full contact.  This works for surfaces of constant curvature, but it doesn’t 
work once curvature reaches sufficient variance over a surface.  By changing the amount of contact from 
100% to a subaperture where change in local curvature approaches zero, some portions of traditional 
spherical lens manufacturing techniques can be applied.  Brittle removal by high speed diamond grinding 
followed by ductile removal using polishing slurry (ceria, alumina, etc) can be used to prepare aspheric 
surfaces.  It’s about here the similarity ends. 

In the past, labor intensive, artisan processes produced aspheric surfaces, and the costs were extreme.  The 
growth of CNC and CAD/CAM technology has made aspheric optic manufacturing practical.  A peripheral 
diamond wheel on a CNC platform traces the surface to generate the aspheric profile.  The surface is then 
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deterministically polished by working only a small area at a time.  Each iteration has potential error 
inducement associated with it, so making as few correction runs as possible is a primary focus.  All of this 
is done while maintaining location of the aspheric axis around which the solid of revolution was formed. 

In grinding, machining accuracy determines profile accuracy.  A more accurate ground profile makes a 
more accurate polished profile more likely, since there’s less correction needed.  Particular attention must 
be paid to wheel wear, wheel balance, positional accuracy and overall stiffness of the grinding platform. 
Since the tool is in contact with the part, errors in these items transmit into the surface being created. 

Typically, asphere polishing is a feedforward, deterministic process.  Local curvature of aspheres may 
appear constant, globally it isn’t.  Asphere polishing requires an adaptive tool and knowledge of what local 
curvature changes and errors are ahead.  This requires knowledge of how the tool will evolve and how 
much removal is needed both locally and overall.  Deterministic processes provided by Zeeko/Loh and 
QED machinery are examples of such tools.  These processes characterize the removal rate as a function of 
curvature for a given tool and combine that with and error map of the surface to be worked.  The resulting 
removal schedule accommodates for volumes to be removed and tool performance at that local curvature. 

Unlike spherical lenses, centration errors in aspheres may not be removed.  Centering errors in a spherical 
lens could be removed through realignment with sufficient diameter overage5.  Realignment is not possible 
for an aspheric surface because the aspheric surface is centered about an axis and not a point.  To avoid 
errors like coma, centration must be conserved throughout processing. 

Conventional spherical interferometric techniques don’t translate to asphere metrology either.  Since local 
curvature is nonconstant, interferometric techniques for aspheres are custom.  The setup and equipment is 
unique for a given aspheric form, so time and money demands are large.  Profilometry is comparatively 
fast, and as a 2-D compromise the current industry standard. 

METROLOGY ACCURACIES AND SAMPLE FORM ERROR SPECIFICATIONS 

The three main metrology options are listed below, each possessing its own benefits and restrictions.  Each 
of these metrology tools must be evaluated in light of the specific aspheric form to be targeted and the 
measurement certainty needed.  They are arranged in order of increasing complexity and subsequently cost, 
and some detail of each is given. 

Profilometry 
This is the most commonly used metrology option for aspheric forms.  The device measures height of the 
surface as a function of movement along one axis, producing a 2-D table of data.  Using information about 
the ideal form and how the profilometer is set up, the data is analyzed, showing error from theoretical form 
with setup related tilt removed.  Measurement certainty here is ~0.1 µm at best, and it decreases for 
extremely steep or extremely flat surfaces. 

A sample specification here would be “± 1µm of deviation from theoretical form”, where deviation in this 
case would be from the form generated by the aspheric equation.  There would also need to be some 
allowance for variance in the vertex radius, analogous to spherical type power seen in spheres and flats. 

Interferometry in Reflection 
Reflective interferometry for aspheres works in the same manner as spheres or flats, except the null target 
is unique to the specific desired ideal aspheric form.  Lenses that may be measured interferometrically can 
be specified in the same manner as any spherical surface, with a linear tolerance on the vertex radius and 
the irregularity as the deviation from aspheric form.  Power may also be used, and Optimax would convert 
the resulting sag difference into a linear tolerance. 

There are three reflective techniques here, on-axis measurement for mildest forms, subaperture stitching for 
more complex forms and holographic testing for the most complex forms. 
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• On-axis Measurement
For some cases the asphericity is mild enough where an interferometer can see through the aberrations 
present.  On-axis testing with a Zernike based aberration subtraction is sufficient.  This process is typically 
reserved for aspheres of less than < 10µm of aspheric departure and < 150mm of diameter.  Allowable 
departure is proportional to diameter. 

• Subaperture Stitching
More departure can be handled by stitching interferograms together.  Using QED’s Subaperture Stitching 
Interferometer (SSI) or Zygo’s VeriFire AT mild aspheric forms can be formed using conventional 
transmission spheres.  While moving the part until the local curvature becomes manageable, several 
(ranging from ~5 to ~100) overlapping measurements are made.  A full aperture representation of the 
deviation of the aspheric surface is formed by stitching the measurements together.  Broadly speaking the 
present limit is < 50µm of aspheric departure and < 200mm of diameter.  Allowable departure is 
proportional to diameter. 

For both the on-axis and stitched cases measurement certainty is about λ/20 at the 632.8nm HeNe laser 
wavelength used here at Optimax.  Local rates of change are extremely important here.  The departure must 
be evenly distributed, and test apertures where departure increases rapidly (more than ~1 λ/mm at HeNe) 
will likely be immeasurable.  Again, this is highly case specific. 

• Holographic Testing 
Interferometric testing is still possible for larger departures using a holographic null.  Each asphere requires 
its own null, each costing about $10 – 15K and taking about 10 – 15 weeks to get.  Measurement certainty 
is about λ/8 at HeNe here, as setup induced errors are difficult to identify and eliminate.  While less 
sensitive, the same issues of rate of change and location of departure still apply. 

Lenses that may be measured interferometrically can be specified in the same manner as any spherical 
surface, with a linear tolerance on the vertex radius and the irregularity as the deviation from aspheric form. 
Power may also be used, and Optimax would convert the resulting sag difference into a linear tolerance. 

Interferometry in Transmission 
For aspheric lenses, there are some specific cases where testing in transmission as opposed to reflection 
offers a simpler solution.  It is possible with one simple null assist optic or even none at all an asphere may 
be tested, saving time and money over reflectance testing.  The test measures literal transmission wavefront 
error (TWE), looking at the sum of all errors.  It sums up the contributions from errors in centration, form 
and material.  This sum is targeted and corrected.  This is an extreme special case.  The short list of criteria 
is below. 

• Field of ±5º or less

• Small spectral range, monochromatic is ideal.

• A fully understood model of spectral performance of the lens.  The lens must be well behaved
interferometrically.  Retrace error and vignetting must be considered and if present addressed.

• An interferometer capable of handling the expected aberrations plus any normal fabrication errors.  Lens
aberrations must not exceed the capabilities of the interferometer to be used.  Aberrations need to be
modeled, and interferometric performance must be characterized.

• Consider wavelength of use versus wavelength of test.  A lens that has a beautiful test at HeNe for
example may not look so good in the near IR.  On a related note, the lens material must transmit in the
wavelength range of the interferometer.
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If any of these criteria cannot be met this option may not be used. 

A sample specification here would be “< 0.25 λ of deviation from theoretical form”, where deviation in this 
case would be from the expected wavefront of an aberration free part.  There would be no other 
specification since the sum of all errors is the target. 

CONCLUSIONS 

• Pick a form to fix aberrations, making it no more complex than needed

• Look for fatal errors of manufacturability

• Model errors to determine tolerancing for form and centration

• Match metrology to form, modeled errors and budget

1 W.J. Smith, Modern Lens Design, Ch 23, McGraw Hill, New York City, 2005 
2 R.E. Fischer, B. Tadic-Galeb, P. Yoder, Optical System Design, Ch 18, McGraw Hill, New York City, 2008 
3 R.E. Fischer, B. Tadic-Galeb, P. Yoder, Optical System Design, Pg 116, McGraw Hill, New York City, 2008 
4 G.W. Forbes, “Asphere, O Asphere, how shall we describe thee?”, Proc. SPIE 7100, Pg 710002-710002-15 (2008) 
5 B. Braunecker, Advanced Optics Using Aspherical Elements, Pg 91 - 92, SPIE , Bellingham, WA, 2008 


